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Abstract. The article presents the concept of a deterministic model for assessing the degree of natural succession on long-term aban-
doned land in the agricultural production area of Poland. The model was implemented as a geographic information system tool. It is 
based on two basic sources of information: cadastral maps, which can suggest if the agricultural land is agriculturally used, and seasonal 
time series of satellite images. The following working hypothesis was adopted in this study: “based on the data from the Sentinel-2 
sensor, it is possible to assess the degree of natural succession on small and medium agricultural plots – by separating at least three 
classes of land cover, representing: early succession consisting mainly grass and ruderal vegetation, advanced succession represented 
by complexes of shrubs and young trees, mature succession - which is a transitional phase preceding the afforestation phase, or can 
already be a functional forest area”. The obtained results confirmed the above hypothesis. In the case of early succession, the clas-
sification efficiency was about 94% in the winter period, for advanced succession about 75% in the autumn period, and for mature 
succession about 78% in the summer period. In the classification process, 8 vegetation indices were examined. In the end, the model 
algorithms were based on the GNDVI index, whose properties allowed for the best differentiation between the above-mentioned suc-
cession classes. NDVI, NDRE, NDVIre1, NDVIre2, NDVIre3 were used as auxiliary indices, which, as shown in the research, can 
improve the classification accuracy at a higher uncertainty threshold in case of weaker separation of classes with the GNDVI index. 
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1. INTRODUCTION

 The problem of agricultural land abandonment is still 
present in the ongoing changes in land cover and land use 
that can be observed in many parts of the world. This pro-
cess has a particular bearing on Central and Eastern Eu-
rope. It is associated to the political transformations that 
began in the 1990s, after the collapse of the USSR and the 
bloc of satellite countries dependent on it. It resulted in  
a profound transformation of the functioning of econo-
mies in these regions, which also affected the agriculture 
of the countries (Janus, Bożek, 2019). Despite the passage 
of three decades, the effects of the conversion from cen-

tralized economy to free market economy are still visible 
in the agricultural area, additionally shaped by the EU’s 
Common Agricultural Policy (CAP) (CAP 2023-27 – Eu-
ropean Commission, 2024). As a direct consequence of 
these changes, now there is a high percentage of aban-
doned land in many European regions after the political 
transformation. This is especially true of southern, central 
and eastern Poland, where small farms survived the period 
of collectivization (Pudełko et al., 2018). After the political 
changes, in some of these farms production ceased to be 
economically viable (Collier, 2018). The first visible effect 
of land abandonment is the emergence of natural and inva-
sive vegetation through secondary succession, which can 
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have a significant impact on the environment and landscape 
(Kozak, Pudełko, 2021; Lasanta et al., 2015). Plant suc-
cession usually occurs through the sequential appearance 
of new plant species in the area, gradually taking over the 
land (Falińska, 1997; Sosnowska, 2019). In the first stage 
of succession, segetal plants are the pioneer species to en-
ter the abandoned agricultural land. In subsequent stages, 
vegetation of higher floors (shrubs, then trees) appears, and 
finally, after several years or decades, secondary afforesta-
tion takes place. Abandoned land is a broad definition that 
includes land that remains registered as agricultural land 
but is not in agricultural use. It can include, among other 
things, marginal land, but also fallow land. According to 
the definition of Anguiano et al. (2008) and Elbersen et al. 
(2014), the beginning of the fallowing process on agricul-
tural land is identified when the land stays (agriculturally) 
unused for several years -at least two or five, depending on 
the definition.
 In addition to issues relating to the causes of land aban-
donment, the effective use of the potential of such areas 
gained importance in recent years (Suziedelyte Visockiene 
et al., 2019). In order to manage effectively abandoned ar-
eas at the national and local level, it is essential to identify 
and record fallow land regionally, assess the state of plant 
succession and plan the future development of this type of 
agricultural plots. Development plans are usually shaped 
by strategies that guide and support, also financially, local 
initiatives. In the case of fallow lands, possible conversion 
scenarios for these areas are: restoration to agricultural 
production, afforestation, or protection as valuable natural 
or semi-natural habitats. Most of these forms of conversion 
are financially supported by the EU’s CAP, under the so-
called greening or now included in the Strategic Programme 
(Eco-Schemes – European Commission, 2024). The most 
radical form of landuse change is exclusion of land from ag-
ricultural production, allowing for introduction of industrial, 
communication or housing infrastructure (Stuczynski et al., 
2009). Another interesting form of fallow land management 
is production of biomass for energy or industrial purposes. 
In this case, it is possible to eventually establish biomass 
plantations or restore the abandoned land to agricultural 
production by harvesting biomass from plots with ad-
vanced plant succession for profit (Matyka, Radzikowski, 
2020; Stolarski et al., 2019; Stolarski et al., 2015). The EU 
policy also supports the introduction of renewable energy 
sources (RES) infrastructure in such areas (Directive – 
2018/2001 – EN – EUR-Lex, n.d.).
 When analyzing issues related to abandoned agricul-
tural land, it is important to look into the potential methods 
of identifying such areas. In relation to other forms of lan-
duse, statistical or cadastral data are not always available 
or up-to-date since farmers are not obliged to register all 
types of agricultural production. Therefore, it is easier to 
identify fallow land as agricultural land that is not regis-
tered for subsidies under the CAP (Pudełko et al., 2018). 

However, this method is often unreliable, as it cannot guar-
antee that no plant production is carried out on agricultural 
plots – such as, for instance, biomass production for energy 
purposes, which is not covered by direct payments (Stolar-
ski et al., 2020). Owing to that, the most reliable source of 
data at our disposal, which can provide information on the 
actual situation, is satellite imagery data.
 In environmental remote sensing, including tracking 
the dynamics of agricultural land abandonment over long 
periods of time, images from Landsat satellites are the most 
commonly used. These data, thanks to their medium spa-
tial resolution (30–40 m) and the free access to the archive 
(even from the 1970s), make it possible to monitor landuse 
changes in larger areas and for long time series (Dara et 
al., 2018; Grădinaru et al., 2019; Gutman, Radeloff, 2017; 
Yin et al., 2018). In Poland, Landsat images were used to 
estimate trends and perform segmentation (LU thematic 
classification) in the years 1986–2019. The research was 
carried out to identify periods of long-term greening and 
cross-reference them with the actual information on fal-
lowing. However, as the authors admit, questions regard-
ing the exact estimates and distribution of abandoned 
farms in Poland remain unanswered at present due to the 
complex nature of the phenomenon (Kolecka, 2021). The 
possibility of analyzing long-term changes in agricultural 
land use, especially in very large areas, on a national or 
even continental scale, is provided by satellite images with 
medium spatial resolution. An example of possible ap-
plications are products with a resolution of 250–1000 m 
from the MODIS image package and processed products. 
They were used, for example, to map abandoned land on  
a European scale, using the Normalized Diversified Vege-
tation Index (NDVI) time series. In this case, however, the 
greatest limitation is the spatial resolution, which, although 
it provides great freedom in the analysis of larger and com-
pact areas, prevents the identification of dynamics on the 
scale of separate agricultural plots. (Estel et al., 2015; Zhu 
et al., 2021).
 Since the middle of the second decade of the 21st 
century, high-resolution satellite images have been made 
available under the Copernicus program by the European 
Space Agency (ESA), which allowed for detailed analyses 
of the dynamics of changes in the use of agricultural land. 
For the above-mentioned purposes, the data obtained by 
multispectral Sentinel-2 sensors seem to be the most use-
ful (Sentinel-2, n.d.). Imaging in the range of green, red, 
red-edge and infrared radiation is ultimately dedicated 
to the monitoring of vegetation cover, and image resolu-
tion (10–20 m) allows for analyzing imaging within the 
boundaries of most agricultural plots, in the case of Poland, 
or clusters of small plots which are subject to similar fal-
lowing processes – this phenomenon is often observed in 
the southern and eastern regions of the country (Kolecka 
et al., 2017; Sosnowska, 2019). An example of research 
in very fragmented agricultural landscapes, e.g. the Polish 
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Carpathians is the use of high-resolution remote sensing 
data such as: airborne laser scanning – ALS, LiDAR – light 
detection and ranging, point clouds or from fine resolution 
aerial photographs. The above-mentioned data sets make 
it possible to assess the amount of natural succession, and 
thus, indirectly draw conclusions about the time of cessa-
tion of agricultural land use (Jabs-Sobocińska et al., 2021; 
Kolecka, 2018; Kolecka, Kozak, 2019; Shahbandeh et al., 
2022). The main barrier to the use of Sentinel-2 images is 
the too short period of the time series for archival images, 
which is a significant limitation to conducting research on 
the dynamics of long-term landuse changes. Therefore, 
there is a need to supplement the data on the situation from 
before 2015/16 by analyzing other archival data, mainly 
the Landsat images mentioned above. In Poland, aerial 
photographs are also available, which have been taken 
regularly since the mid-1990s for the purposes of build-
ing a cadastral system in regional administration and Land 
Parcel Identification System (LPIS) (geoportal.gov.pl, n.d.; 
Trystuła, Konieczna, 2008). These data allow for identify-
ing the exact dates of abandonment of agricultural produc-
tion on the monitored plots, which is also the starting date 
of the natural succession processes (Kozak, Pudełko, 2021; 
Szostak et al., 2018).
 In addition to the opportunities in acquiring multispec-
tral data, methods and approaches to land use classifica-
tion have developed in parallel, including in the context of 
identifying unused land. Many publications on the subject 
have used Object-Based Image Analysis (OBIA) to iden-
tify abandoned agricultural land. OBIA is an automatic 
classification method that uses image objects as the basic 
units instead of individual pixels, the method is based on 
segmentation, which groups pixels into shapes that repre-
sent individual objects (Goga et al., 2019; Jabs-Sobocińska 
et al., 2021; Suziedelyte Visockiene et al., 2019; Szostak 
et al., 2016, 2018; Toure et al., 2018; Yusoff et al., 2017). 
Despite the very good results, the downside of this method 
is the need for specialized software and time-consuming 
when segmenting larger areas. In contrast, pixel-based 
classification still appears to be a versatile approach, with  
a range of available classification algorithms.
 Recently, a widely used method is the use of machine 
learning algorithms, such as Support Vector Machines – 
SVM, Nearest Neighbor – NN, random forests – RF and 
classification trees – CT, supported by regression models 
or phenological aspects (Abdi, 2020; Macintyre et al., 
2020; Morell-Monzó et al., 2020). The machine learning 
approach provides ample opportunities to capture multiple 
variables, handle multivariate data but also model nonlin-
ear relationships (Alonso et al., 2015). When identifying 
abandoned agricultural land, natural succession or classi-
fying vegetation types, the most popular methods use veg-
etation indices mainly NDVI and its derivatives as well as 
EVI, GNDVI, SAVI but also many combinations of spec-
tral bands, including e.g. SWIR or Red Edge bands avail-

able to Sentinel 2 (Goga et al., 2019; Hawryło et al., 2018; 
Macintyre et al., 2020; Morell-Monzó et al., 2020). The 
listed vegetation indices are often compiled into multi-time 
series, using which it is possible to capture phenological 
differences between vegetation classes and determine the 
optimal time of data acquisition (Tumelienė et al., 2021). 
Since each region is characterized by specific vegetation 
types and the course of the phenological period, most stud-
ies concern the local scale. Indicating the best term for 
identifying abandoned areas will therefore depend on the 
specifics of the region and the methodological approach. 
For example, Tumelienė et al. (2021) showed that the best 
date for identifying abandoned areas for the Lithuanian 
area, was autumn – September, while in the case stage for 
Slovakia, the best date was July (Szatmári et al., 2018; 
Tumelienė et al., 2021). 
 The main purpose of this article is to answer the ques-
tion to what extent mid-resolution and multi-spectral satel-
lite imagery can be used to assess the degree of natural 
succession on abandoned agricultural land. The key as-
sumption formulated by the research group is to develop 
a universal model that will allow for the assessment and 
classification of the progress of the natural succession, 
which, in the future, is to be incorporated into the decision 
support system regarding the strategy of fallow land and 
wasteland management as well as obtaining biomass and 
developing renewable energy sources in rural areas. 
 The authors put forward the following working hypoth-
esis – based on the Sentinel-2 satellite images, it is possi-
ble to assess the degree of natural succession on small and 
dispersed agricultural plots by separating at least three land 
cover classes, which represent: (1) early succession, repre-
sented mainly by ruderal vegetation; (2) advanced succes-
sion, represented by complexes of shrubs and young trees; 
(3) mature succession – a transitional phase that takes place 
just before the afforestation, or may constitute a functional 
forest area.

2. MATERIALS AND METHODS

2.1. Study area

 The research area is located in southeastern Poland. It 
covers part of the Puławy commune, which is a Local Ad-
ministrative Unit (LAU code:1006061121409) according 
to the Eurostat nomenclature, located in the northwestern 
part of the Lubelskie Voivodeship (NUTS-2: PL81) – Fig-
ure 1. The area is located on the left bank of the Vistula Riv-
er. It is a coherent region in terms of functionality, which 
until the 1990s, i.e. the beginning of the political changes 
that led to the described landuse changes, was character-
ised mainly by agricultural activity. Despite the growing 
pressure of housing development and the outflow of rural 
population, the area has not lost its agricultural character, 
and its proximity to the city of Puławy (the capital of the 
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region) makes it a food production base. In the study area, 
the sowing structure is dominated by cereal crops (about 
45%) mainly winter wheat and winter triticale, a large 
percentage is also occupied by permanent crops such as 
orchards or plantations of strawberries, blueberries. The 
specificity of the agricultural area of the region is the large 
fragmentation of farms and small size of individual agri-
cultural plots, which, to some extent, could determine the 
emergence of abandoned land in the landscape (‘Study of 
conditions and directions of spatial development’, n.d.)

2.2. Data Sources

2.2.1. Location of the potentially abandoned agricul-
tural land

 In order to locate potentially abandoned land, cadastral 
plots not declared for direct payments (under the CAP) and 
at the same time having the attributes of agricultural land 
(arable land, meadows, pastures) were selected. The LPIS 
database administered by The Agency for Restructuring 
and Modernisation of Agriculture (ARMA) was used for 
identification. The WMS layer of land cover objects was 
downloaded from the public server (current status as of 
2021.11.23) – preview available on the national geoportal: 
mapy.geoportal.gov.pl (geoportal.gov.pl, n.d.). The fact 
that farmers do not apply for direct payments for the se-
lected parcels can prove that there is no plant production 
on these plots, i.e. that they are agriculturally abandoned.

2.2.2. Remote Sensing data
 The next step in our study was to acquire and prepare 
satellite images. The research was based on images pro-
vided by ESA (The European Space Agency) from the Co-

Figure 1. Location of the study area. Own study.

pernicus Sentinel-2 (S-2) mission. The mission is based on 
a constellation of two twin satellites orbiting on the same 
path. Each satellite is equipped with a multispectral imag-
ing system with 13 spectral bands, offering a high-resolu-
tion spatial image registration (10 m, 20 m or 60 m). Each 
S-2 sensor provides a 10-day revisit period, which, with 
combination of Sentinel-2A and Sentinel-2B satellites, is 
reduced to 5 days (Sentinel-2, n.d.). 
 The analysis of time series in the assumed scenario re-
quired the acquisition of all possible S-2 optical images 
produced throughout the growing season. For the study 
area, 14 almost cloudless images from the year 2019 were 
obtained (Table 1).

Table 1. Sentinel-2 acquisitions.

Date of 
satellite pass Scene id

2019-02-19 L2A_T34UEC_A010215_20190219T094304
2019-03-31 L2A_T34UEC_A010787_20190331T094033
2019-04-15 L2A_T34UEC_A019910_20190415T094033
2019-04-25 L2A_T34UEC_A020053_20190425T094505
2019-06-09 L2A_T34UEC_A011788_20190609T094208
2019-06-14 L2A_T34UEC_A020768_20190614T094034
2019-07-29 L2A_T34UEC_A012503_20190729T094242
2019-08-28 L2A_T34UEC_A012932_20190828T094520
2019-09-22 L2A_T34UEC_A022198_20190922T094031
2019-10-12 L2A_T34UEC_A022484_20191012T094345
2019-10-27 L2A_T34UEC_A013790_20191027T094607
2019-11-01 L2A_T34UEC_A022770_20191101T094343
2019-11-16 L2A_T34UEC_A014076_20191116T094318
2019-12-06 L2A_T34UEC_A014362_20191206T094328
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 Then, for each acquisition date, a se-
ries of vegetation indices (VI) were gen-
erated. The following assumptions were 
made when selecting indicators:
 – No more than 10 types of indices 

will be tested;
 – Tested indicators should be based on 

the band ranges dedicated to remote 
sensing of vegetation (Bands 3–8 see 
Table 2);

 – Spatial resolutions of 10 m will be 
preferred.

 In the end, eight vegetation indices 
were selected to assess the degree of 
natural succession (Table 3). It should 
be noted that three of the selected in-
dicators are modifications of the NDVI 
index (NDVIre1, NDVIre2, NDVIre3), 
taking into account the red edge ranges 
(spectral bands: 5, 6, and 7) instead of 
the standard near infrared (NIR, band 
8). Such a combination of bands, includ-
ing a 10 m resolution visible Red band, 
was supposed to make the NDVI index 
more sensitive to narrow red edge bands, 
without sacrificing the spatial resolution. 
The selection of vegetation indices was 
based on a literature review.
 In the next step, eight vegetation 
index (VI) maps were generated for all 
S-2 images listed in Table 1. The entire 
process of image data processing (down-
loading from the ESA server, trimming 
to the boundaries of the study area, 
initial processing of satellite images in-
cluding atmospheric correction, calcula-
tion of spectral indices and resampling 
to a 10 m resolution) was performed in 
the R environment using the sen2r pack-
age (Ranghetti et al., 2020).

2.3. Methods

 The study was carried out in the fol-
lowing sequential steps: verification and 
generalization of the database of agricul-
tural plots selected for analysis (section 
2.3.1.); determination of spectral signa-
tures for pre-defined succession classes 
(section 2.3.2.); development of satellite 
data VI statistics (section 2.3.3); identifi-
cation of the best observation periods for 
LU classification (section 2.3.4), devel-
opment of a classification model and as-
sessment of its accuracy (section 2.3.5, 
2.3.6).

Table 2. The spectral and spatial resolution of Sentinel-2’s bands.

Sentinel-2 Bands Resolution 
[m]

Central Wavelenght 
[μm]

Band 2 (b2) – Blue 10 0.490
Band 3 (b3) – Green 10 0.560
Band 4 (b4) – Red 10 0.665
Band 5 (b5) – Vegetation Red Edge1 20 0.705
Band 6 (b6) – Vegetation Red Edge2 20 0.740
Band 7 (b7) – Vegetation Red Edge3 20 0.783
Band 8 (b8) – NIR 10 0.842
Band 8a (b8a) – Vegetation Red Edge4 20 0.865
Band 11 – SWIR 20 1.610
Band 12 – SWIR 20 2.190

Source: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial

Table 3. List of explored spectral indices of vegetation.

Vegetation index Equation for S2 
bands Reference

NDVI 
Normalized Difference Vegetation 

Index
Rouse et al., 1974

GNDVI
Green Normalized Difference 

Vegetation Index

Gitelson, Merzlyak, 
1998

EVI
Enhanced Vegetation Index Huete et al., 2002

SAVI
Soil Adjusted Vegetation Index Huete, 1988

NDVIre1
Red-edge1 Normalized Difference 

Vegetation Index 

Hansen, Schjoerring, 
2003; 

Herrmann et al., 
2011; 

IDB - Index 
DataBase, n.d.; 
Thompson et al., 

2019

NDVIre2
Red-edge1 Normalized Difference 

Vegetation Index
NDVIre3

Red-edge1 Normalized Difference 
Vegetation Index

NDRE
Normalized Difference Red Edge Barnes et al., 2000

2.3.1. Preparation of ground data (agricultural plots)
 The obtained database of undeclared agricultural parcels (as described in 
section 2.2.1) was prepared for further analysis in the following steps:
• Plots with an area of less than 0.3 ha were removed from the database, 
except when they constituted a complex of plots – then, they were merged 
(Figure 2). The purpose of this pre-selection process was to exclude objects 
which were too small for remote sensing with S-2 resolution.
• Verification of the actual fallowing/land abandonment was carried out 
– by eliminating plots that are still cultivated or subject to conversion for 
non-agricultural purposes (buildings, infrastructure). In order to confirm the 
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abandonment status and determine the approximate date 
of abandonment from agricultural production, verification 
was carried out based on the current and historical ortho-
photomaps from the period of 1997–2020 provided by 
GUGIK – The Head Office of Geodesy and Cartography 
(geoportal.gov.pl, n.d.). All such verified plots were then 
personally inspected in-situ. 

2.3.2. Scheme for determining spatial signatures
 Referring to earlier research conducted in this area 
(Kozak, Pudełko, 2021) – natural succession was divided 
into three main classes of land cover:
 – Class 1 – Goldenrod – areas with a predominance of 

plants of later succession stages, mainly goldenrod (Soli-
dago L.), tansy (Tanacetum vulgare L.). Criterion: Over 
80% share of goldenrod or tansy in land cover. 
 – Class 2 – Bushy – areas where apart from ruderal plants, 

such as goldenrod (Solidago L.), there are bushes, e.g., in 
the form of blackberries (Rubus L.), blackthorn (Prunus 
spinosa L.) and single self-seeded trees. Criterion: Over 
30% share of bushes in land cover.
 – Class 3 – Wooded/afforested – areas with trees, dense 

shrubs, advanced succession. Criterion: places where 
young forest covered at least 0.10 ha.

Figure 2. A: an example of a complex of small agricul-
tural plots directly adjacent to each other; B: poly-
gon created by connecting the plots – generated for 
further analyses using remote sensing methods.

 When determining ground reference data, the fact that 
individual classes of natural succession are characterized 
by high diversity even within a single pixel, as well as the 
uncertainty of delineated boundaries between these class-
es, was taken into account. Therefore, instead of points, 
polygons were determined, each containing at least 9 pix-
els, with a resolution of 10 m × 10 m – in line with the 
resolution of the four basic S-2 channels (Figure 2). 
 The signature polygons were initially determined based 
on the most up-to-date orthophotomaps from 2017–2020 
with resolution of 0.25–0.5 m provided by GUGIK and 
verified by inspection in-situ. As a results of the works car-
ried out in this part of the research, a set of polygons was 
created in the geodatabase developed for the purposes of 
the Geographic Information System, containing: 41 signa-
tures for class 1, 42 signatures for class 2, and 41 signa-
tures for class 3.

2.3.3. Preparation of spectral signatures database based 
on remote sensing data

 For all the dates indicated in Table 1, 8 thematic maps 
were drawn, representing the values of VI (as indicated in 
Table 3). Conversion of S-2 images to maps was performed 
using the methods described in chapter 2.2.2. Descriptive 

Figure 3. Example of polygons representing classes of natural succession: A – class 1; B – class 2; C – class 3
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statistics were then calculated for each spectral signature. 
Since the sample of pixels within each polygon was not 
numerous (at least 9 to a dozen or so pixels), and the pres-
ence of objects from outside the class was allowed (see 
three bushes visible in Figure 2A) statistical distributions 
of index values do not meet the conditions of normal dis-
tribution. For this reason, the median and quartiles were 
adopted as statistical measures. The analysis was per-
formed using the RStudio software (Hijmans, 2020). The 
direct result of this step was a table of spectral signature 
polygon attributes with class descriptive statistics.

2.3.4. Method for determining the best observation pe-
riods

 In the next step of the analysis, it was examined wheth-
er statistically significant differences and dependencies 
between the values of individual vegetation indices could 
be identified for individual succession classes, and which 
stage of vegetation would potentially allow for separation 
of these classes in the process of index maps’ classification 
– it should be noted here that demonstrating the possibility 
of class separation based on VI is a sine qua non condition 
for developing a classification model and thus validating 
the working hypothesis. 
 In order to recognize the differences in the distribu-
tion of VI values within the polygons of individual classes, 
these dependencies were visualized with box plots, which 
allowed for the initial recognition of dispersion and dif-
ferences in the values of the median and quartiles for each 
date and class of succession. A complete picture of this 
analysis is included in Appendix 1 (Figure A 1-8). 
 Then, statistical inference was performed. The Shap-
iro-Wilk test confirmed the expected lack of normal dis-
tribution of individual groups, therefore, to assess the 
diversity of VI values in 3 succession classes, the non-
parametric Kruskal-Wallis test was performed, which did 
not require the above assumption (Kruskal, 1952; Kruskal, 
Wallis, 1952). In order to find out, which groups (succes-
sion classes) differed significantly, the method of multiple 
comparisons was applied for all dates of satellite images’ 
acquisition. As a result of the statistical analysis, a set of 
measures was obtained to determine the significance of the 
difference in the spectral reflectance between the succes-
sion classes in all the available periods indicated in Table 1.

2.3.5. Classification model
 The construction of the model constitutes the main 
utilitarian goal of this work. The model was assumed to 
serve as a functional tool for assessing the degree of natu-
ral succession on abandoned land in Poland. The following 
criteria were adopted in the algorithmization process:
 For the classification process, satellite images from the 
most appropriate periods will be selected – i.e. those, when 
the best separation of spectral signatures is observed (see 
2.3.2).

 The classification can be based on a combination of 
periods and vegetation indices – namely, determination 
of belonging to a classified pixel may depend on the re-
sults obtained in different periods. This assumption ensues 
mainly from the fact that the species identified as markers 
for given classes have certain spectral properties which are 
characteristic for them in different periods of vegetation, 
e.g. goldenrod, being such an indicator species for class 
1, blooms at the turn of August and September, which is  
a characteristic feature of this plant allowing for separation 
of its site from other types of vegetation cover – especially 
trees and shrubs.
 The model is to be based on a deterministic decision 
tree algorithm, using previous statistical analyses
 The model is to be open to future modifications and ex-
tensions – therefore, algorithms and analytical tools were 
programmed in an open source environment. 
 The performance of the model will be verified by its 
validation using an independent sample of data (see 2.3.6).

2.3.6. Assessment of classification accuracy
 In order to perform a quantitative analysis of the clas-
sification accuracy, the confusion matrix was used, the 
representations of which are visualized in Table 4, which 
allowed for the calculation of the classification evaluation 
metric (Foody, 2002; Hejmanowska, Wężyk, 2020).

Table 4. Error Matrix Example.

Reference points i

Pr
ed

ic
tio

n 
po

in
ts

 j

Class 
1

Class 
2

Class 
3 sum

Class 
1 n11 n21 n31 n1j

sum (n11,n21,n31)
Class 

2 n12 n22 n32 n2j
sum (n12,n22,n32)

Class 
3 n13 n23 n33 n3j

sum (n13,n23,n33)
sum n1i n2i n3i n

 Overall Accuracy – OA – is the quotient of the sum of 
correctly classified points and the total number of points:

OA = 

 Producer’s accuracy” – PA – is expressed by the ratio of 
correctly classified points in a given class to the total num-
ber of points of this class in the reference data (example for 
class 1):

PA = 

n11 + n22 + n33
n

n11
n1i
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 User’s accuracy – UA – is the ratio of points correctly 
classified in a class to the total number of points of this 
class in the prediction image (example for class 1):

UA = 

 Kappa coefficient – defines the total classification error 
and the degree of agreement between compared images. It 
takes the value of 0–1, where 1 means full agreement and 
0 – agreement at the level that would occur for a random 
distribution of data.

3. RESULTS

3.1. Selection of dates and indices for the succession 
degree classification model 

 In line with the chosen methodology (sections 2.3.3 
and 2.3.4), the pre-selection was conducted based on the 
analysis of the diversity of spectral signature distribution, 
visualized using the box plot method. When analyzing 
changes in the course of spectral reflection characteris-
tics in time, four most convenient dates were indicated, in 
which the greatest separation of VI value distributions oc-
curs. These are as follows: February 19 (winter); April 15 
(spring); August 28 (summer); October 12 (autumn). The 
best results were obtained for the GNDVI index, where, in 
all the indicated periods, almost a complete separation was 
observed for the intervals (between the lower and upper 
quartile) in all three classes (Figure 4). In this respect, the 
GNDVI index clearly stood out among all the other indi-
cators. However, the too short range of diversification of 
values both for classes in the studied periods and for their 

annual distribution may be problematic. Equally promising 
results for the whole vegetation season were obtained for 
NDVI, in case of which a greater diversification in ampli-
tudes during the season was observed, yet for one period 
(August, 28) the upper quartile of the second class coincides 
with the lower quartile of the third class. One can also notice 
a weaker separation in the winter and spring seasons (in rela-
tion to GNDVI) – see Figure A1 vs. Figure A7.
 In the case of other indicators, only the selected dates 
offer a possibility to distinguish between the succession 
classes spectrally. The NDVI, NDVIre2 and NDVIre3 in-
dices are very similar in this regard; on June 14, the dif-
ferences between all classes in terms of these three indi-
cators were not statistically significant, while for June 9, 
the NDVI index separated only classes 1 and 3, and for 
NDVIre3 it was not possible to separate class 1 and 2. In 
general, the most favorable dates were in early spring and 
autumn. In the case of the NDVIre1 index, a complete sep-
aration of succession classes was possible only for three 
dates in early spring, however, on April 25 the quartile cut-
offs did not coincide (Figure A1–A4). Also on this date, 
there is a clear class 3 separation observed for all NDVI 
derived indices. This is the moment when tree vegetation 
starts, while uncut, dry biomass of perennial plants (class 
1) blocks the spectral reflection of young shoots. However, 
in the case of class 2, it is the moment of flowering for 
some shrubs, e.g. blackthorn (Prunus spinosa L.), which 
may cause lower values of the NDVI index.
 In the case of SAVI and EVI indicators, the separation 
of the three classes was significantly impeded (Figure A5 
and Figure A6). For SAVI, it was potentially possible only 
for the following dates: February 19, March 31, April 15, 
April 25, and for EVI only for February 19, March 31. 

Figure 4. Distribution of GNDVI values   for three succession classes on the following selected dates: 2019.02.19; 2019.04.15; 
2019.08.28; 2019.10.12. The distribution for all examined dates is presented in Figure A7 (Appendix A).

n11
n1j

Maximum

Minimum
Outside value

Lower Quartile [lQ]
(25th percentile)

Upper Quartile [uQ]
(75th percentile)

Interquartile rangeMedian [M]
(50th percentile)
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 The last indicator is NDRE using the near infrared 
bands and red edge. This is the only indicator for which 
the potential separation of classes is possible in summer 
and late spring, when the culmination of vegetation occurs. 
However, the high dispersion of its values can prove prob-
lematic in determining threshold values for the classifica-
tion (Figure A8). Box plots for all the indices are listed in 
Appendix A (Figure A1– A8).
 The results of the box plot analysis were confirmed 
with the Kruskal-Wallis ANOVA test, which in the case of 
the GNDVI index showed the significance of distribution 
separation in all three succession classes, for 12 out of 14 
dates (p<0.000001) and in case of NDVI for 11 out of 14 
dates. To compare, the SAVI index allowed for perform-
ing classification only for four dates, and EVI only for two 
(Appendix A, Table A1).

3.2. Classificaton model

 The classification model was programmed and run in 
the QGIS environment, which allowed for a direct access 
to the geodatabase (VI maps developed based on satel-
lite images). The algorithms were based on the principles 
adopted in chapter 2.3.5 and on the preliminary results al-
lowing for the selection of appropriate indicators (VI) and 
vegetation periods in which these indicators are the most 
diverse, thereby allowing for mapping the degree of natu-
ral succession within the analyzed agricultural plots. The 
final image of the model structure is presented in Figure 
5a–d, which illustrates how the classification rules were 
applied to assign pixels to a given succession class in each 
of the four selected dates. Whereas Tables 5–8 summarize 
the values of median, lower quartile (lQ) and upper quar-

Table 5. Conditions for classification dated 2019.02.19.

GNDVI NDVI NDRE
Median lQ uQ Median lQ uQ Median lQ uQ

Class 1 0.5006 0.4622 0.5259 0.3270 0.3045 0.3728 0.2230 0.1920 0.2506
Class 2 0.5693 0.5210 0.6057 0.4378 0.3723 0.5143 0.2854 0.2127 0.3283
Class 3 0.6545 0.6043 0.7075 0.5251 0.4754 0.6924 0.3911 0.3113 0.4500

lQ – lower Quartile, uQ – upper Quartile

Table 6. Conditions for classification dated 2019.04.15.

GNDVI NDVIre1 NDVIre2
Median lQ uQ Median lQ uQ Median lQ uQ

Class 1 0.5084 0.4966 0.5237 0.1533 0.1355 0.1789 0.3095 0.2810 0.3451
Class 2 0.5494 0.5215 0.5726 0.1985 0.1738 0.2311 0.3680 0.3214 0.4156
Class 3 0.6015 0.5782 0.6584 0.2756 0.2389 0.3412 0.4807 0.4194 0.5968

lQ – lower Quartile, uQ – upper Quartile

Table 7. Conditions for classification dated 2019.08.28.

GNDVI NDRE
Median lQ uQ Median lQ uQ

Class 1 0.6249 0.5865 0.6439 0.4369 0.3962 0.4639
Class 2 0.6692 0.6502 0.7144 0.4983 0.4491 0.5610
Class 3 0.7433 0.7231 0.7584 0.6021 0.5619 0.6248

lQ – lower Quartile, uQ – upper Quartile

Table 8. Conditions for classification dated 2019.10.12.

GNDVI NDVIre3 NDVI
Median lQ uQ Median lQ uQ Median lQ uQ

Class 1 0.6301 0.6059 0.6450 0.6065 0.5666 0.6440 0.6301 0.5896 0.6685
Class 2 0.7005 0.6533 0.7320 0.7159 0.6506 0.7623 0.7310 0.6718 0.7781
Class 3 0.7471 0.7348 0.7613 0.7923 0.7666 0.8128 0.8052 0.7834 0.8227

lQ – lower Quartile, uQ – upper Quartile

vegetation periods
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Figure 6. Examples of maps of natural succession degree classification, generated using the model – for the four selected dates.
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tile (uQ) of each indicator (see box plot description in 
Figure 4).
 For the first of the selected dates (February, 19), 
the advantage of good spectral separation illustrated 
by the GNDVI index for all classes of succession was 
used. In case of uncertainty between classes 1 and 2, 
the NDVI index was additionally used, and in the case 
of uncertainty between classes 2 and 3, the NDRE in-
dex was incorporated. In subsequent periods, the most 
appropriate indices to distinguish between classes 1 
and 2, and 2 and 3 were respectively: NDVIre1 and 
NDVIre2 in the second period; NDRE in the third; 
and NDVIre3 and NDVI in the fourth. In this way,  
a deterministic model was built based on a combina-
tion of several vegetation indices, which at a given 
date are characterized by the best properties of regis-
tering reflected radiation for those spectral channels 
that best enable recognition of features characteristic 
for a given class of succession.
 The direct effect of geoprocessing performed us-
ing the model was generation of four maps of suc-
cession classes at the assumed dates. An example of 
such maps in a raster format is presented in Figure 6. 
It should be noted that the adopted resolution of maps 
generated by the model corresponds to the highest 
spatial resolution of the Sentinel-2 images (10×10 m). 
Another relevant point is that the model allows for  
a difference in classification between individual dates 
– which is also visible in the presented example (Fig-
ure 6). As assumed at the beginning, the modelling 
accuracy for the indicated dates will only be estimat-
ed in the validation process.

3.3 Model validation result

 In order to assess the accuracy of the results gen-
erated by the algorithms of the model, an independ-
ent validation set was randomly selected, consisting 
of 126 points, of which 36 points represented class 
1 of succession, 49 class 2, and 41 class 3. Succes-
sion class attributes for each point were verified by 
eye observation. Validation was performed by direct 
comparison of the classification results with the situ-
ation observed on site. The accuracy assessment of 
each classification was performed using the QGIS 
SCP script (Congedo, 2021). Based on the calculated 
error matrix, which compares points with a field-
verified succession degree attribute with the results 
obtained by classification performed using the devel-
oped model, the statistics of the overall model assess-
ment are calculated: Total Accuracy (TA) and Kappa 
coefficient, as well as assessment of accuracy in clas-
sification to individual classes: User’s accuracy (UA), 
Producer’s accuracy (PA) – Table 9. 
 The analysis of the validation results presented in 
the table shows that the best overall results were ob-

tained for the winter period (2019.02.19), in which the TA index 
achieved the highest value (74.6) accompanied by an equally 
high value of Kappa (0.62). A similar result was obtained for 
the autumn period, where TA value is slightly lower (73.8), but 
Kappa value is the highest of all the modelled periods (0.8). 
The worst overall results were obtained for the summer period 
(2019.08.28), in which the lowest values were recorded for both 
TA (69.8) and Kappa (0.56).
 When analyzing the possibility of separating individual class-
es, it should be noted that the use of the model for classifying 
satellite images in winter may give the best results for separating 
the first succession class. In this instance, 34 out of 36 samples 
were classified correctly (PA = 94.4). Class 3 (woody vegetation), 
on the other hand, was best visible in summer (PA = 78.0). Shrubs 
(class 2) were best identified in autumn (PA = 75.6).

2019.02.19 Class types determined from reference source
Class types 
from classi-
fied map 

Classes 1 2 3 Totals User’s 
accuracy

1 34 10 0 44 77.2
2 2 32 13 47 68.1
3 0 7 28 35 80.0

Totals 36 49 41 126 Total 
accuracy

Producer’s Accuracy 94.4 65.3 68.3 74.6
Kappa 0.62 

2019.04.15 Class types determined from reference source
Class types 
from classi-
fied map 

Classes 1 2 3 Totals User’s 
accuracy

1 31 11 1 43 72.1
2 5 30 11 46 65.2
3 0 8 29 37 78.4

Totals 36 49 41 126 Total 
accuracy

Producer’s Accuracy 86.1 61.2 70.7 71.4
Kappa 0.60 

2019.08.28 Class types determined from reference source
Class types 
from classi-
fied map 

Classes 1 2 3 Totals User’s 
accuracy

1 28 4 3 35 80.0
2 8 28 6 42 66.7
3 0 17 32 49 65.3

Totals 36 49 41 126 Total 
accuracy

Producer’s Accuracy 77.8 57.1 78.0 69.8
Kappa 0.56 

2019.10.12 Class types determined from reference source
Class types 
from classi-
fied map 

Classes 1 2 3 Totals User’s 
accuracy

1 29 7 0 36 80.5
2 7 37 14 58 63.8
3 0 5 27 32 84.4

Totals 36 49 41 126 Total 
accuracy 

Producer’s Accuracy 80.6 75.6 65.9 73.8
Kappa 0.80 
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 An alternative method to indicate the modelled re-
sult best corresponding to the real situation is to assess 
the classification error for other classes in relation to the 
class under consideration (user’s accuracy). In such case, 
the best results were obtained for separation of class 3 in 
autumn (UA = 84.4). However, when using this indicator, 
one should pay attention to PA, which in this case is very 
unfavorable (65.9) – this proves that this type of land cover 
is classified incorrectly as shrubs (14 cases out of 41).

4. DISCUSSION 

4.1. Model accuraccy vs current needs

 According to research conducted by Pudełko et al. 
(2018), currently in Poland over 2.7 million ha of agricul-
tural land is not declared by farmers as the area under ag-
ricultural activity. This means that these areas have been 
set aside or transformed for other, non-agricultural needs 
without being reported to the land records. Another finding 
resulting from the studies is that 2.03 million ha constitute 
agricultural plots with an area of > 0.3 ha, where effective 
agricultural production can take place. On a national scale, 
this is a considerably large area – approx. 14% of the total 
area of agricultural land. The biggest paradox of this situa-
tion is that, so far, these areas have not been subject to any 
assessment. Such situation results from the methodology 
adopted by the Central Statistical Office, institution respon-
sible for statistics and reporting of agricultural production, 
which in the case of abandoned land is not carried out (The 
Agricultural Census 2020, n.d.). Also, ARMA, which is 
the government agency responsible for the implementation 
of the CAP, does not have a registry of abandoned land 
– because there are no subsidies for this type of land. In 
2004, when Poland became one of the EU countries, it was 
assumed that the problem of land abandonment would be 
solved by EU subsidies and farmers would restore these 
areas for agriculture. Alas, it did not happen.
 The above-described situation has resulted in a con-
stantly growing number of fallow lands. There is no data 
on their current condition, and no programs supporting any 
restoration of these areas for active use or systemic con-
version to the so-called “environmental areas” subject to 
legal tools of nature protection, where habitats of natural 
and valuable vegetation for local ecosystems would be re-
stored (Bell et al., 2020; Queiroz et al., 2014; Szirmai et 
al., 2022). However, due to the size of the discussed area, 
the investment potential of these lands is constantly grow-
ing. Future changes in landuse must, however, take into 
account the current state of abandoned land, which is most 
affected by the degree of natural succession. The presence 
of trees or bushes can be at the same time considered as an 
obstacle or, on the contrary, as a factor favouring the deci-
sion to liquidate fallow. An example of such may be the 
possibility of harvesting biomass in the process of remov-

ing self-seeding plants, especially when the succession is 
defined as class 3 according to classification described in 
this work (trees). On the market, there can already be found 
companies offering such services – but the plot must meet 
the criteria for the suitable amount of biomass (Stolarski et 
al., 2021, 2022). 
 Another example is the possibility of restoring aban-
doned land to agricultural production using the farmer’s 
equipment and efforts – for this scenario, the preferred, 
and sometimes the only possible form of land cover is  
a complete lack of trees and bushes – i.e. class 1 as de-
scribed in this work. Another aspect crucial for the pos-
sibility of implementing a policy of effective management 
of abandoned land is learning about its regionalization. As 
it has already been proved in the cited work (Pudełko et al., 
2018), abandoned land is subject to regionalization both 
in terms of the area and shape of agricultural plots, as well 
as the general percentage of abandoned area in the region 
(Krysiak, 2011).
 The above-characterized situation of recognizing the 
fallowing status indicates the need to carry out at least  
a general recognition of the degree of natural succession 
of abandoned land throughout the country as well as its 
regionalization. 

4.2. Possibilities of increasing the assessment accuracy 
of abandoned land

 Examples of spatial differentiation of natural succes-
sion within plots (visible e.g. in Figure 3) prove that reso-
lution has a large impact on the definition of spectral sig-
natures used in the model. When using polygons to test 
spectral characteristics, one can find it difficult to identify  
a representative area that fully meets the definition of  
a given class. For instance, in Figure 3A we can see the 
presence of bushes, and in Figure 3B there is a different 
density in the bushes. Theoretically, better classification 
results could be obtained by using image data with better 
spatial resolution, e.g. aerial orthophotomaps or VHR sat-
ellite images. Such accuracy allows for direct differentia-
tion and separation of objects (trees, shrubs, infrastructure) 
and for better characteristics of these objects (e.g. distin-
guishing between coniferous and deciduous trees, assess-
ment of biomass resources).
 Other significant factors, in addition to spatial resolu-
tion, are: the ability to obtain data regardless of weather 
conditions and using subsequent spectral ranges. Both 
these factors are crucial in building the model’s algorithm. 
In case of the former, the results clearly indicate the im-
pact of the proper selection of the observation period. For 
images in the visible band, there may be great difficulties 
in obtaining data related to cloudiness or the presence of 
cloud shadows (Aybar et al., 2022). This problem can be 
eliminated or reduced by incorporating images from other 
satellites or by using radar images (Bucha et al., 2021; 
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Goga et al., 2019; Suziedelyte Visockiene et al., 2019). 
Currently, there are a number of national publications on 
the identification of unused agricultural land as well as de-
tailed recognition and assessment of vegetation formation 
(Grabska-Szwagrzyk et al., 2024; Hawryło et al., 2018; 
Wakulińska, Marcinkowska-Ochtyra, 2020). However, 
there is a gap in knowledge about the possibilities of us-
ing Sentinel-2 images for a detailed assessment of the de-
gree of advancement of natural succession. The classes of 
natural succession distinguished for the purposes of this 
study are characterized by great diversity, both in terms of 
species composition, degree of advancement and density. 
In this case, the dispersion and fragmentation of cadastral 
plots is also problematic, which is characteristic of the se-
lected study region. The above-mentioned factors therefore 
pose a great challenge in terms of the selection of appropri-
ate classification methods, dates of image acquisition and 
the use of appropriate vegetation indices. One of the publi-
cations in which 2 classes of succession were distinguished 
due to the height, density and maturity of succession, the 
shrub class and the forest class (Bucha et al., 2021). The 
authors in Slovakia used Sentinel-1 and Sentinel-2 images 
for a model for estimating biomass from unused agricultur-
al land. correspond to the highest resolution of Sentinel-2 
(10–20 m).
 Increasing the accuracy of the abandoned land assess-
ment model by supplementing the algorithm with succes-
sive indexes based on other spectral ranges seems to be 
of little importance. Hence, it is difficult to expect an im-
provement in accuracy by introducing mid-infrared ranges 
into the model (Morell-Monzó et al., 2020; Suziedelyte 
Visockiene et al., 2019; Szatmári et al., 2018; Tumelienė 
et al., 2021). A more effective solution may be the use of 
thermal images. However, the resolution of those images 
would have to correspond to the highest resolution of Sen-
tinel-2 (10–20m).

5. CONCLUSIONS

 The deterministic model of natural succession assess-
ment presented in the paper for four dates of satellite image 
acquisition can be an effective tool for assessing the three 
adopted classes of natural succession. The validation re-
sults of the model proposed in this paper confirm the possi-
bility of using this tool to conduct such kind of research. In 
this case, the main advantages of the model are as follows:
 The use of imaging data (Sentinel-2) available for the 
entire country, with a high probability of obtaining materi-
als within the indicated optimal periods
 Spatial resolution of data which enables remote sensing 
of land cover diversification within agricultural parcels 
 The open code of the model algorithm that can be re-
fined and supplemented with other data sources as needed
 The validation results confirm also the sufficient ef-
fectiveness of the proposed method. Recognition of the 

lack of advanced natural succession in the case of > 94.4% 
of plots is sufficient for developing regional strategies of 
restoration of abandoned land to agricultural production, 
without taking into account advanced financial outlays for 
the removal of self-seeding plants. In addition, the clas-
sification of high succession at the level of 78% enables 
harvesting of biomass in the process of landuse conver-
sion – e.g. for purposes related to bioeconomy (Matyka, 
Radzikowski, 2020; Stolarski et al., 2020; Von Cossel et 
al., 2019). 
 The main indicator on which the natural succession 
assessment model was based is GNDVI. Its properties al-
lowed for the best differentiation between the three adopt-
ed classes of natural succession. NDVI, NDRE, NDVIre1, 
NDVIre2, NDVIre3 were used as auxiliary indicators, 
which, as shown in the studies, can improve the accuracy 
of classification at a higher uncertainty threshold in the 
case of a weaker separation of classes by the GNDVI in-
dex.
 The approach used in the development (modelling) of 
data may provide an indication of the method of changing 
the management of long-term fallow lands, which may be 
used in practice in spatial planning and creating the state’s 
agricultural policy.

5.1. Further research directions

 Guided by the possibilities indicated in the above sec-
tion, future research conducted by the team of authors will 
focus on the following aspects:
• Assessing whether increasing the resolution of image 

data may affect modelling results. For this purpose, 
available aerial orthophotomaps (RGB) and indexes 
based on combinations of radiation reflection in the 
blue, green and red range will be used. The research 
will analyse the possibility of using this datasource 
only or in combination with Sentinel-2 imagery.

• Introducing Sentinel-1 radar data to the model, which 
will eliminate the problems caused by cloud cover. 

 Recognizing the possibility of assessing biomass re-
sources that can be obtained by elimination of natural suc-
cession on abandoned land.
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Appendix A

Table A1. Multiple Comparsions p values of the tested vegetation indices based on the post-hoc (Dunn Bonferroni) at 95% level of 
significance (the green cells indicate statistically significant differences between classes of succession). cl. – succession classes; 
date – dates Sentinel 2 acquisitions.

date NDVI NDVIre1 NDVIre2

2019_02_19
p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_03_31

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p<0.0001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_04_15

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p<0.0001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_04_25

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p<0.0001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_06_09

p=0. 02965 cl. 1 cl. 2 cl. 3 p=0.720637 cl. 1 cl. 2 cl. 3 p=0.103074 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_06_14

p=0.18063 cl. 1 cl. 2 cl. 3 p=0.204066 cl. 1 cl. 2 cl. 3 p=0.409185 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_07_29

p=0.000002 cl. 1 cl. 2 cl. 3 p=0.766655 cl. 1 cl. 2 cl. 3 p=0.000041 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_08_28

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.662965 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_09_22

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.345758 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_10_12

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_10_27

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_11_01

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3
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2019_11_16

p=0.000013 cl. 1 cl. 2 cl. 3 p=0.010023 cl. 1 cl. 2 cl. 3 p=0.00007 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_12_06

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.009343 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

date NDVIre3 NDRE SAVI

2019_02_19
p<0.00000111 cl. 1 cl. 2 cl. 3 p=0.06113 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_03_31

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.002456 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_04_15

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.051698 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_04_25

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.079206 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_06_09

p=0.012523 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p=0.008061 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_06_14

p=0.127944 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p=0.058782 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_07_29

p=0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p=0.234653 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_08_28

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p=0.101259 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_09_22

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p=0.312013 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_10_12

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3 p=0.000017 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_10_27

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.015262 cl. 1 cl. 2 cl. 3 p=0.000002 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

Table A1 continuation
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2019_11_01

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.003243 cl. 1 cl. 2 cl. 3 p=0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_11_16

p=0.000021 cl. 1 cl. 2 cl. 3 p=0.02236 cl. 1 cl. 2 cl. 3 p=0.000285 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

2019_12_06

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.000372 cl. 1 cl. 2 cl. 3 p=0.000065 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1 cl. 1
cl. 2 cl. 2 cl. 2
cl. 3 cl. 3 cl. 3

date GNDVI EVI

2019_02_19

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_03_31

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_04_15

p<0.000001 cl. 1 cl. 2 cl. 3 p<0.000001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_04_25

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.079206 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_06_09

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.001828 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_06_14

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.026929 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_07_29

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.306634 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_08_28

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.144126 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_09_22

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.558712 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

Table A1 continuation
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2019_10_12

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.000087 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_10_27

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.00001 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_11_01

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.000003 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_11_16

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.000704 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

2019_12_06

p<0.000001 cl. 1 cl. 2 cl. 3 p=0.000075 cl. 1 cl. 2 cl. 3
cl. 1 cl. 1
cl. 2 cl. 2
cl. 3 cl. 3

Figure A 1. Distribution of NDVI values for three classes of natural succession in the growing season. Box plot description see Figure 4.
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Figure A 2. Distribution of NDVIre1 values for three classes of natural succession in the growing season. Box plot description see 
Figure 4.

Figure A 3. Distribution of NDVIre2 values for three classes of natural succession in the growing season. Box plot description see 
Figure 4.
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Figure A 4. Distribution of NDVIre3 values for three classes of natural succession in the growing season. Box plot description see 
Figure 4.

Figure A 5. Distribution of SAVI values for three classes of natural succession in the growing season. Box plot description see Figure 4.
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Figure A 6. Distribution of EVI values for three classes of natural succession in the growing season. Box plot description see Figure 4.

Figure A 7. Distribution of GNDVI values for three classes of natural succession in the growing season. Box plot description see Figure 4.
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Figure A 8. Distribution of NDRE values for three classes of natural succession in the growing season. Box plot description see Figure 4.
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