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INTRODUCTION

 A progressing global soil degradation resulting from ag-
riculture intensification (Hossain et al., 2020; Kopittke·et 
al., 2019) is getting more and more serious due to climate 
changes (Hari et al., 2020; Ray et al., 2019). And so, in-
creasing and maintaining the quantity and quality of yields 
without a growing degradation of environmental systems 
of the Earth, soils especially, is a big challenge (Kopittke 
et al., 2019; Terzić et al., 2019; Viet, 2023).
 Soil provides basic services which cover food pro-
duction, nutrients cycling, water filtration and carbon se-
questration (Lal et al., 2015). Soil functions, both physical 

and biological, are modified by, e.g., crop rotation, cover 
crops, the application of fertilizers and agricultural prac-
tices (Kalbitz, 2000; Chantigny, 2003; Dębska et al., 2016; 
Jaskulska, Jaskulski, 2021). Soil organic carbon (SOC) 
and nitrogen (N) are two of the most important indicators 
for agricultural productivity. The C and N dynamics are 
mostly affected by climate factors, soil environment and 
anthropogenic factors (Brevik, 2013). The aspect of the dy-
namics of those elements in soils is essential, e.g., due to 
crop productivity and enhancing the ecosystems manage-
ment practices (Law et al., 2018). Adequate fertilization is 
of key importance to increase the crop production and, as 
a result, C and N return to soil in a form of plant residue 

Abstract. The aim of the paper has been to investigate the effect of fertilization with nitrogen and microelements (Se and Cu, Mn, Zn) 
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Jena analyser. In the soil samples analysed TOC, irrespective of the sampling date and the microelements application method, ranged 
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(Kirkby et al., 2014). Besides, over the last decade, more 
and more attention has been attracted to the importance of 
the so-called healthy soils (Safeguarding our soils, 2017).
 One of the microelements indispensables for human 
and animal health is selenium (Se). Soil is an essential 
source of selenium used by plants and it serves an impor-
tant function for selenium cycling in terrestrial ecosystems. 
Selenium content depends on the type of parent material, 
the processes of sorption by clay minerals in soil and iron 
oxides as well as on leaching processes. The form in which 
Se occurs in soil affects the availability of that element to 
plants (Borowska, Koper, 2004; Moreno et al., 2013). Sele-
nium is an element which is indispensable for the adequate 
human and animal development (Piotrowska, 1985; Silva 
Lara et al., 2019). In big rates it is toxic, however its deficit 
increases the susceptibility to various diseases in people 
and in animals. As for animal needs, the selenium richness 
in some arable soils can be too low, especially in loose soils 
(formed from sands), and poor loam soils with Se content 
below 0.1 ppm. Currently around 15% of the world popu-
lation show Se deficit (Stroud et al., 2010). According to 
Levander and Burk (2006), the main source of Se globally 
is wheat and so a decrease in Se consumption is connected 
with changes in Se content in cereals and soils. 
 Macro- and microelements cycling in soil is closely 
connected with the content of organic matter and post-har-
vest residue management (Mythili et al., 2003; Orzechows-
ki, Smólczyński, 2021). And, therefore, an inadequate soil 
management leads to organic matter and mineral nutri-
ents loss in soil and, finally, to a decrease in their content 
in plants. The postharvest residue weight and chemical 
composition affect not only the content of organic matter 
but also its fraction composition (Ventorino et al., 2012; 
Dębska et al., 2022). Organic matter consists of fractions 
of various stability (resistance to decomposition): labile 
fractions which include the so-called dissolved organic 
matter (DOM) and fractions with a greater resistance to 
decomposition: fulvic acids, humic acids and humins (Gui-
maraes et al., 2013; Cao et al., 2016; Dębska et al., 2016; 
Rosa and Dębska, 2018; Guo et al., 2019; Dębska et al., 
2020; Banach-Szott et al., 2021).
 An important role is played by the most mobile and 
fast-decomposing humus fraction (DOM). Its content is 
determined based on the content of carbon in water ex-
tracts so called: dissolved organic carbon (DOC). DOC in 
arable soils, in general, accounts for less than 1% of TOC. 
Despite such a low share, DOM is essential, e.g., for bioge-
ochemical cycling of carbon, nitrogen and phosphorus and 
it can be a source of nutrients for microorganisms (Gonet et 
al., 2002; Zsolnay, 2003; Bolan et al., 2011; Rosa, Dębska, 
2018). Generally, it is assumed that changes in DOC can be 
an important indicator of changes which occur in soils, es-
pecially due to anthropogenic factors (Bolan et al., 2011).
As results from literature reports (Kalbitz et al., 2000; 
Jokubauskaite et al., 2015; Rosa, Dębska, 2018), the dy-
namics of changes in DOM in soils is not clear-cut and 

it does not depend on the rate of the mineral fertilization 
applied.
 Due to a growing soil degradation and total organic car-
bon (TOC) losses, as a result of changes in soil use and of 
agricultural production intensification, the local, regional 
and global soil protection has become one of the key goals 
of the Common Agriculture Policy (COM, 2006). Preserv-
ing the resources of soil humus is crucial not only for soil 
productivity but also for the role of soils in sequestration 
(fixing) carbon from the atmosphere. And so, the aim of 
the paper has been to investigate the effect of fertilization 
with nitrogen and microelements (Se, Cu, Mn, Zn) on the 
content of carbon and nitrogen as well as dissolved organic 
matter in soils.

MATERIALS AND METHODS

Materials

 The research was carried out in a field experiment (Ag-
ricultural Experiment Station in Minikowo (53°10′2″ N, 
17°44′22″ E, the kujawsko-pomorskie voivodeship) from 
which soil samples were collected.
 The AES Meteorological Point in Minikowo provided 
data on weather conditions from 1949 to 2014 and in the 
2013/2014 growing season (IX–VIII). The total rainfall 
during the study was 455.3 mm and was 8.7% lower than 
the multi-year average. On the other hand, the air tempera-
ture was 0.1 °C higher than the multi-year average (8.0 °C).  
It should be noted that during the spelt sowing period 
(IX.2013) and the start of spring vegetation (IV–V.2014), 
weather conditions were optimal. In turn, in VI and VII 
2014, very dry periods were recorded.
 The experiment was carried out in Albic Luvisols (ac-
cording to the FAO-UNESCO international classification), 
IIIa soil quality class, of the very good rye soil complex 
(Systematyka Gleb Polski, 2019). The soil showed a neu-
tral reaction and, in terms of richness – a high or average 
content of available forms of phosphorus, potassium, mag-
nesium and manganese and a low content of copper and 
zinc. The granulometric composition was dominated by 
the sand fraction (2.0–0.05 mm) – 75%, the percentage of 
the silt fraction (0.05–0.002) was 19% and the percentage 
of the clay fraction (<0.002 mm) was 6%. The crop which 
was grown was spelt (winter cv. “Rokosz”, Plant Breeding 
in Strzelce).
 A two-factor field experiment was established with the 
split-plot design. The experimental plots were 9 m2 in size 
(1.5x6 m). The first factor included three rates of nitro-
gen fertilization (0, 40 and 80 kg ha-1), the second one – 
variants of application of microelements (Table 1). On the 
experimental plots, pre-sowing, there was applied stable 
phosphorus fertilization in a form of 46% triple superphos-
phate (at the rate of 30 kg P ha-1) and potassium fertiliza-
tion in a form of 57% potassium chloride (at the amount of  
103 kg K ha-1). The nitrogen rates of 40 kg N ha-1 were 
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applied in the form of 34% ammonium nitrate to start the 
spring vegetation, whereas the nitrogen rates of 80 kg N ha-1  
were divided; 40 kg to start the spring vegetation and  
40 kg (34-37 stages in the BBCH scale – of the stalk-shoot-
ing phase) (Matysiak, Strażyński, 2018).
 Foliar and soil fertilization with microelements  
(Na2SeO4·10 H2O – 0.01 kg Se ha-1, Na2SeO4·10 H2O –  
0.02 kg Se ha-1 and a combined Se and Cu, Mn, Zn ferti-
lization (CuSO4· 5 H2O – 0.1 kg Cu ha-1, MnSO4· H2O –  
0.3 kg Mn ha-1, ZnSO4· 7 H2O – 0.2 kg Zn ha-1) was ap-
plied  using sprayer Kwazar Zeus (capacity 15 L, battery-
powered) in a form of technical salts (34-37 stage in the 
BBCH scale) together with the foliar and soil rate of 6% 
urea water solution. The treatments were performed on 
one day; adequately dissolving the rate of copper, man-
ganese and zinc in the volume of water corresponding to  
300 dm3 ha-1. Soil fertilization was performed in the inter-
rows.
 All the cultivation treatments, sowing and harvest (92-
99 stage in the BBCH scale – at the full maturity of grain) 
were performed compliant with the agrotechnical guide-
lines optimal for a spelt (Kotecki et al., 2020). 
 During the vegetation of the cereal, plant protection 
agents were applied to combat loose silky-bent (Apera spi-
ca-venti) and dicotyledonous weeds (herbicides: Isoguard 
500 SC at the rate of 2 l ha-1, Aminopielik Tercet 500 SC at 
the rate of 1.8 l ha-1, Aurora 40 WG at the rate of 20 g ha-1)  
and basic fungal diseases (fungicide Yamato 303 SE at 
the rate of 1.5 ha-1 + surfactant Silwet Gold at the rate of  
0.1 l ha-1).  
 Soil was sampled from a depth of 0–30 cm at the begin-
ning and the end of the growing season. Sampling 1 was 
after the start of spring vegetation, sampling 2 – after har-
vesting the crop from the field. The forecrop for spelt was 
winter rape. 

Methods

 In the soil samples, once they were dried at the room 
temperature and sieved through the screen (2 mm), the fol-

lowing were assayed: total organic carbon (TOC) and total 
nitrogen (TN) with the Vario Max CNS analyser provided 
by Elementar. 
 Dissolved organic matter (DOM) was extracted with 
0.004 M CaCl2 at the ratio soil to extractant 1:10 (w v-1). 
The soil samples were shaken for 1 hour and then centri-
fuged. In the post-extraction solutions, DOC was assayed 
and using the Multi N/C 3100 Analityk Jena analyser it 
was expressed in mg kg-1 d.m. of the soil sample and as 
percentage share in TOC.
 The obtained laboratory test results were subjected to 
analysis of variance in the model appropriate for the method 
of establishing the experiment in the field. Analysis of vari-
ance was performed for two-factor experiments in a split-
plot, and Tukey’s multiple range test with a probability of 
p=0.05 was used to assess differences between the object 
means, with ANALWAR software. The tables present the 
mean values for three replications. The evaluation of dif-
ferences in the studied parameters between the sampling 
dates (sampling 2 – end of the growing season, sampling 
1 – beginning of the growing season) for the studies was 
performed by calculating single-base indexes (Figs 1-6).

RESULTS AND DISCUSSION

 One of the basic soil fertility indicators is organic mat-
ter content which determines the chemical, physical and 
biological properties of soil. In the soil samples analysed, 
TOC content, irrespective of the sampling date, nitrogen 
dose and the microelements application method, ranged 
from 8.38 (LSe20-N0 – sampling 2 and GSe10+M-N40 – 
sampling 1) to 10.6 g kg-1 (GSe20+M-N80, LSe10+M-N80 
– sampling 1 and GSe10+M-N40 – sampling 2) (Tables 2 
and 3). Analysis of variance did not show any influence 
of nitrogen dose and microelement fertilization (with or 
without selenium) on TOC content (Table 4). For the foliar 
fertilization with microelements TOC in variant LSe10+M 
was significantly higher than in LSe20 and LSe20+M (Ta-
ble 5). In general, the application of microelements into 
soil in combination with selenium resulted in an increase 

Table 1. Experiment design.

Nitrogen 
fertiliza-

tion

Foliar fertilization Soil fertilization

LSe10 LSe10+M LSe20 LSe20+M GSe10 GSe10+M GSe20 GSe20+M

„0” 
control LSe10-N0 LSe10-N0+M LSe20-N0 LSe20-N0+M GSe10-N0 GSe10-N0+M GSe20-N0 GSe20-N0+M

40 kg ha-1 LSe10-N40 LSe10-N40+M LSe20-N40 LSe20-N40+M GSe10-N40 GSe10-N40+M GSe20-N40 GSe20-N40+M

80 kg ha-1 LSe10-N80 LSe10-N80+M LSe20-N80 LSe20-N80+M GSe10-N80 GSe10-N80+M GSe20-N80 GSe20-N80+M

Explanations: L – foliar fertilization, G – soil fertilization, Se – selenium fertilization, M – Cu, Mn and Zn fertilization
Factor I: N0, N40, N80, Factor II: microelements fertilization (Se10, Se20, Se10+M, Se20+M)
Form and dose: Cu – CuSO4·5 H2O (0.1 kg Cu ha-1); Mn – MnSO4 · H2O (0.3 kg Mn ha-1); Zn – ZnSO4·7 H2O (0.2 kg Zn ha-1); Se10 – Na2SeO4·10 H2O  

(0.01 kg Se ha-1); Se20 – Na2SeO4·10 H2O (0.02 kg Se ha-1) 
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Table 2. TOC, TN and DOC content and TOC/TN ratio for the soil samples fertilized with nitrogen and microelements into soil. 

Nitrogen
fertilization

Sampling 1 Sampling 2
GSe10# GSe10+M GSe20 GSe20+M GSe10 GSe10+M GSe20 GSe20+M

TOC [g kg-1]
„0” – control 8.98 8.52 9.35 9.28 9.39 8.72 9.39 10.4
40 kg ha-1 9.89 8.38 8.46 9.15 9.03 10.6 8.96 9.73
80 kg ha-1 9.02 8.70 9.34 10.6 9.36 9.71 8.77 9.54

TN [g kg-1]
„0” – control 0.98 0.92 1.02 1,00 1.05 1,00 1.06 0.89
40 kg ha-1 1.17 0.90 0.95 0.99 1.02 1.11 1.01 1.04
80 kg ha-1 0.96 0.95 1.02 1.07 1.03 1.09 1.01 1.08

TOC/TN
„0” – control 9.16 9.26 9.17 9.28 8.94 8.72 8.86 11.7
40 kg ha-1 8.45 9.31 8.91 9.24 8.85 9.55 8.87 9.36
80 kg ha-1 9.4 9.16 9.16 9.91 9.09 8.91 8.68 8.83

DOC [mg kg-1]
„0” – control 128 127 146 179 143 142 131 130
40 kg ha-1 162 138 124 136 126 107 139 131
80 kg ha-1 150 127 132 132 133 146 143 135

# Abbreviations – see Table 1

in TOC in the soil sampled at the end of the vegetation 
period as compared with the soil sampled at the beginning 
of it, ranging from 0.43 to 26.8%. A decrease in TOC from 
6.1 to 10.0% was observed in three variants (N80+Se20; 
N40+Se10 and N80+Se20+M) (Fig. 1).
 For the foliar fertilization with microelements, there 
were found no significant differences between TOC in the 
soil sampled at the end and at the beginning of the vegeta-
tion period. An increase in TOC at the end of the vegetation 
period, as compared to the initial value, ranged from 0.22 
to 5.6% and a decrease – from 0.23 to 12.6% (Fig. 2). As 
reported by Van Groenigen et al. (2017), Ouyang and Nor-
ton (2020), intensive nitrogen fertilization results in soil 
degradation (a decrease in the content of organic matter, 
pH), pollution of waters due to intensified leaching pro-
cesses. As reported by Szczepanek et al. (2020), a decrease 
in the content of organic matter due to increased nitrogen 
fertilization rates can be a result of a decrease in plant root 
weight. Cai et al. (2019), drawing on a 25-year field ex-
periment, demonstrate that fertilization with mineral ferti-
lizers (NPK) only did not cause changes in TOC content. 
Mensik et al. (2018), based on a 62-year experiment, show 
that NPK fertilization lowers the OM content and quality 
(a lower TOC and a lower content of humus substances). 
In the present experiment (Tables 4 and 5, Figs. 1 and 2), 
irrespective of the microelements application method, no 
significant impact of nitrogen fertilization on TOC content 
was found, which is very important, in terms of soil system 
equilibrium.
 As seen from Tables 4 and 5, irrespective of the appli-
cation method, there has been identified no effect of fertili-

zation with nitrogen and microelements on TN in soil. The 
lack of significant changes in nitrogen content, especially 
for higher doses of this element, indicates an intensifica-
tion of the mineralization processes of this element and/
or an increased nitrogen uptake by plants (Lemanowicz et 
al., 2024; Bednarek, Reszka, 2008). The differences across 
the soil sampling time ranged from -12.8 to 23.3% for soil 
fertilization and from -8.11 to 9.4% – for foliar fertilization 
(Fig. 3 and 4). 
 TOC and TN result in the values of the ratio TOC/TN  
(Tables 2 and 3). TOC/TN values for soil fertilization ranged 
from 8.45 (GSe10-N40 – sampling 1) to 11.7 (GSe20 +M-
N0 – sampling 2) and for foliar fertilization from 8.21 
(LSe20+M-N40 – sampling 2) to 10.0 (LSe10+M-N80 – 
sampling 1). TOC/TN values coincide with the commonly 
known statement that the ratio TOC/TN in soils is the qual-
ity which is relatively constant and standard agrotechnical 
practices do not affect that value. Furthermore, the lack of 
significant differences in TOC/TN values indicates that the 
processes of carbon and nitrogen mineralization occurred 
with similar intensity. The experiments conducted by Si-
mon (2008) show that the type of fertilization does not sig-
nificantly differentiate the C:N ratio in the topsoil. Studies 
on the effect of fertilization and crop rotation were con-
ducted by Pikuła (2018), who found that crop rotation does 
not significantly differentiate the C:N ratio in the topsoil. 
The application of manure and mineral fertilizers was the 
subject of research by Blecharczyk et al. (2018). Similarly 
to the research by Simon (2008), these authors found that 
the fertilization used did not significantly differentiate C:N 
in the soil. According to Kuś (2015), the C:N ratio in the 
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Table 3. TOC, TN and DOC content and TOC/TN ratio for the soil samples fertilized with nitrogen and microelements in a form of 
foliar fertilization.

Nitrogen
fertilization

Sampling 1 Sampling 2
LSe10# LSe10+M LSe20 LSe20+M LSe10 LSe10+M LSe20 LSe20+M

TOC [g kg-1]
„0” – control 8.97 9.44 8.84 8.72 9.43 9.97 8.38 8.7
40 kg ha-1 8.76 10.2 8.88 8.99 8.68 8.91 8.99 8.46
80 kg ha-1 9.18 10.6 8.85 9.2 9.48 9.41 9.26 9.22

TN [g kg-1]
„0” – control 1.07 1.05 0.94 1.04 1.06 1.10 0.98 1.00
40 kg ha-1 0.95 1.11 1.07 0.98 1.02 1.02 1.01 1.03
80 kg ha-1 0.96 1.06 0.96 1.03 1.05 1.04 1.04 1.05

TOC/TN
„0” – control 8.38 8.99 9.40 8.38 8.90 9.07 8.55 8.70
40 kg ha-1 9.22 9.19 8.30 9.17 8.51 8.74 8.90 8.21
80 kg ha-1 9.56 10.0 9.22 8.93 9.03 9.05 8.90 8.78

DOC [mg kg-1]
„0” – control 129 157 134 128 119 143 122 132
40 kg ha-1 134 157 130 139 123 134 131 132
80 kg ha-1 140 149 132 135 125 129 126 128

# Abbreviations – see Table 1

Figure 1. Single-base indexes (expressed 
in %) of changes in TOC between 
sampling 2 (the end of the growing 
season) and sampling 1 (the begin-
ning of the growing season) for soil 
samples fertilized with nitrogen and 
microelements into soil.

Figure 2. Single-base indexes (expressed 
in %) of changes in TOC between 
sampling 2 (the end of the growing 
season) and sampling 1 (the begin-
ning of the growing season) for soil 
samples fertilized with nitrogen and 
microelements of foliar fertilization.

# Abbreviations – see Table 1

# Abbreviations – see Table 1
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Table 4. Results of the statistical analysis for TOC, TN and DOC content for 
the soil samples fertilized with nitrogen and microelements into soil. 

Factor TOC
[g kg-1]

TN
[g kg-1] TOC/TN DOC

[mg kg-1]

Nitrogen 
fertilization

0 9.26 0.99 9.35 140.8
40 9.28 1.02 9.03 130.3
80 9.38 1.03 9.14 137.1

LSD n.s. n.s. n.s. n.s.

Microelements 
fertilization#

GSe10 9.28 1.04 8.98 140.3
GSe10+M 9.11 0.99 9.16 127.8
GSe20 9.05 1.01 8.94 135.8
GSe20+M 9.79 1.01 9.67 140.4

LSD n.s. n.s. n.s. n.s.
# Abbreviations – see Table 1; n.s. – nonsignificant differences

Table 5. Results of the statistical analysis for TOC, TN and DOC content for 
the soil samples fertilized with nitrogen and microelements in a form of 
foliar fertilization. 

Factor TOC
[g kg-1]

TN
[g kg-1] TOC/TN DOC

[mg kg-1]

Nitrogen 
fertilization

0 9.05 1.07 8.57 132.9
40 8.98 1.02 8.80 134.9
80 9.40 1.02 9.18 134.1

LSD n.s. n.s. n.s. n.s.

Microelements 
fertilization#

LSe10 9.08 1.07 8.63 129.9
LSe10+M 9.76 1.06 9.17 144.8
LSe20 8.87 1.00 8.88 129.2
LSe20+M 8.92 1.02 8.75 132.1

LSD 0.784 n.s. n.s. n.s.
# Abbreviations – see Table 1; n.s. – nonsignificant differences

soil is constant and is usually 10:1, regardless of crop rotation and 
fertilization.
 As reported by Bolan et al. (2011), a very sensitive indicator of 
changes which occur in soils due to anthropogenic factors are chang-
es in dissolved organic matter. Contrary to the results reported by 
Jokubauskaite et al. (2015) and Embacher et al. (2008), mineral ni-
trogen fertilization was not found to change the content of extractable 
organic carbon considerably. DOC in the soils sampled from variants 
with the application of microelements into soil, irrespective of the 
soil sampling date, ranged from 107 (GSe10+M-N40 – sampling 2) 
to 179 mg kg-1 (GSe20+M-N0 – sampling 1, Table 2) and, as for fo-
liar fertilization – from 119 (LSe10-N0 – sampling 2) to 157 mg kg-1 
(LSe10+M-N0 and LSe10+M-N40 – sampling 1) (Table 3). The statis-
tical analysis, however, did not identify a significant effect of nitrogen 
fertilization and adding microelements on DOC (Tables 4 and 5). The 
DOC content differences across the soil sampling time with the appli-
cation of microelements into soil accounted for -27.4 to 14.8% and for 
foliar fertilization from -14.5 to 3.13% (Fig. 5 and 6). No significant 
impact of nitrogen fertilization on DOC content were also reported by 
Zsolnay and Gorlitz (1994) as well as by McDowell et al. (1998). As 
seen from literature (Zsolnay, Gorlitz, 1994; Chantigny et al., 1999; 
Kalbitz et al., 2000; Jokubauskaite et al., 2015; Rosa, Dębska, 2018), 

the dynamics of DOM did not depend on the 
rate of the mineral fertilization applied. Mineral 
fertilization, with nitrogen mostly, can lower 
the contents of dissolved organic carbon (DOC) 
by increasing the microbiological activity, 
which is related to an increased consumption of 
soluble organic carbon compounds (Chantigny, 
2003). An increase in the microbiological activ-
ity can also trigger an increase in DOC due to 
intensified processes of decomposition of stable 
fractions of organic matter (humic and fulvic 
acids and humins) (Kalbitz et al., 2000). One 
can therefore assume that in the experiment 
presented, DOM mineralization and decompo-
sition of stable forms of organic matter leading 
to the formation of DOM reached the state of 
equilibrium.

CONCLUSIONS

 Fertilization with different doses of nitro-
gen as well as soil and foliar fertilization with 
Cu, Mn, Zn  with or without Se covered by this 
study did not affect TOC, TN content and con-
sequently the values of TOC/TN and DOC con-
tent significantly, which is important in terms of 
the stability and equilibrium of the soil system 
investigated.
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